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Abstract. In this paper we consider efficient sets of multiple objective problems, in which the
feasible action set is the intersection of two other sets, and where one of these sets has a special
structure, such as an assignment or transportation structure. The objective is to find the efficient
set of the special structure set, and its intersection with the other set, and to examine how good an
approximation this set is to the desired efficient set. The approximation set is called an �-efficient
solution set. Some theoretical partition results are given for a special constraint structure with upper
bounds on the objective function levels. For the case of 0-efficient solution sets, and finite explicit
sets, a computational cost analysis of two computational sequences is given. We also consider two
other 0-efficient solution set cases. Then �-efficiency is considered for linear problems. Finally, the
approach is illustrated by a special multiple objective transportation problem.
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1. Introduction

Many real life problems involve evaluating a set of potential actions in terms of
several measures of performance such as cost and time. These give rise to what
are known as multiple objective problems (see, e.g., [1–5]). Let us suppose that
we have K such measures of performance, giving rise to a performance vector
f(x) = (f 1(x); f 2(x); �; �; fk(x); �; �; fK(x)) for each potential action x in a set
X . In the ideal situation there will be a known preference function 	 such that, if
x 2 X and y 2 X , then x is at least as good as y if and only if 	(f(x)) 6 	(f(y)).

In such cases the decision problem becomes

min
x2X

[	(f(x))]:

Note that we have cast our problem in minimisation form, but it might equally well
be cast in maximisation form.

In general, it is difficult to find explicitly, at least initially, the function 	, and
it leads to trying to find some useful property of 	 which can be used to generate
some actions among which an optimal one, in terms of the implicit function 	,
lies. The weakest property of 	 is a monotone one. For f 2 RK ; g 2 RK let us
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436 D.J. WHITE

define f 6 g if and only if fk 6 gk; 1 6 k 6 K . Then the monotone property is
that, if x 2 X and y 2 X , and f(x) 6 f(y), then

	(f(x)) 6 	(f(y));

and if f(x) 6 f(y); f(x) 6= f(y), then

	(f(x)) < 	(f(y)):

In such cases, if x 2 X and y 2 X , with f(x) 6 f(y); f(x) 6= f(y), then the vector
f(x) is said to dominate the vector f(y), and the solution x is said to dominate the
solution y, and y can be eliminated without loss. The set of non-dominated x 2 X
is called the efficient solution set, X�, of X with respect to ff(�);6g.

Iff(X�) is the image ofX� in the objective function space, then the optimisation
problem reduces to

min
f2f(X�)

[ (f)]:

References [6] and [7] attempt to characterize f(X�) as a first step towards solving
the above problem. The set f(X�) is, in general, even for linear objective functions
and polyhedral X , a non-convex set. Hence, any insights into the characterization
of f(X�) can be of assistance in solving the given optimisation problem.

A more general form of the problem of this paper has been studied, in which
the optimisation problem takes the form

min
x2X�

[�(x)];

where �(�) is convex, or specifically linear, and X is convex, or specifically poly-
hedral, or polytopal (see, e.g., [8–12]). This problem is somewhat harder than that
of this paper, but, nontheless, the ability to find, or characterize, f(X�), will be of
use in these situations.

However, finding X� and f(X�) can be much more difficult than finding an
optimal solution to a scalar problem, such as minimising fk(x) over x 2 X for
some k. Now, even in scalar optimisation problems, if the computational load is
high, finding an optimal solution to the scalar problem may be replaced by finding
a solution whose objective function value is within a prespecified positive distance
� of the optimal value. This philosophy clearly becomes of more importance in
the multiple objective efficient solution set case. In addition, because of the vastly
increased computational load, higher values of � may be acceptable. In addition
to this, short cuts which use special aspects of the structure of the problem can be
valuable.

In this paper, we generalise the notion of an �-optimal solution set for a scalar
problem to the notion of an �-efficient solution set, and use a class of problems
with a specific structure to try to short cut the computations. We will consider a
class of problems where X takes the form

X = Z \ Y (1)
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where Z and Y are individually simpler thanX , and we assume thatX is compact
in Rn

+ and f(�) is continuous on Rn
+.

In addition to this, we will extend the problem beyond finding X� to a problem
of finding an �-dominating substitute X�(�), when � 2 RK

+ is specified and �-
dominance is defined as follows, viz. given two sets of actions U; V , with V � U ,
and f(�) is defined on V and U , then V is said to �-dominate U with respect to
ff(�);6g if

u 2 U ! 9v 2 V with f(v)� � 6 f(u): (2)

If � is acceptably small, and if V � is the efficient set of V with respect to ff(�);6g
then, given the monotonic preference assumption, V � will be almost as good as U
for decision making purposes. If it is relatively easy to determine, in comparison
with determining the efficient solution set, then it may be more acceptable to find
V �, even though some loss of value may arise in the final decision making process
as a result.

If U� is the efficient set of U with respect to ff(�);6g, then V will be said to
be an �-efficient solution set for U if V � U� and V satisfies (2).

In our case we will set

U = X; V = Z \ Y �: (3)

It is easily demonstrated that if fU; V;Xg satisfy (1) and (3) then (see Lemma 1)

V = V � � U�: (4)

Then, if fU; V;Xg satisfy (1)–(3), V is an �-efficient solution set for U . Then we
may set X�(�) = V .

In Section 2 we will look at some sufficient conditions for Z \ Y � to be the
efficient solution set and to be a 0-efficient solution set. We will look at the question
of preferred computational sequence and consider some special cases. In Section
3 we will examine the problem of evaluating a specific � for Z \ Y � to be an
�-efficient solution set forX in the linear case, specifically forK = 2, although the
approach is generalisable to general K . We also look at a special application. We
then give a summary and comments. We present no formal algorithm. The paper
is intended as an exploratory one, developing a framework on the basis of which
subsequent algorithms may be designed.

In what follows, if U is any set, with f(�) defined on U , we define

f(U) = f� 2 RK : � = f(u) for some u in Ug:

Then, if V is a 0-efficient set for U , we have

f(V ) = f(U�):

Also, V is a 0-efficient set for U� if and only if

f(V ) = f(U�):
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438 D.J. WHITE

As a result of this, 0-efficiency, and �-efficiency, will be subsequently examined in
the objective function space. We also note, for future use, that

Z \ Y � = X \ Y �:

2. 0-efficiency

2.1. A PRELIMINARY RESULT

From now on we will assume that the sets fU; V;X; Y; Zg are all in Rn
+, and that

f(�) is defined on all these sets, taking real values on these sets.
We first of all prove the following theorem.

LEMMA 1. If fU; V;Xg satisfy (1) and (3), then (4) holds.
Proof. Clearly, V � � V . Now suppose u 2 V nV �. Then, there exists a v 2 V

such that f(v) 6 f(u), f(u) 6= f(v). Now u 2 V and v 2 V . Hence, u 2 Y � and
v 2 Y �. This contradicts the statement that f(v) 6 f(u), f(u) 6= f(v). Hence,
V � = V .

Let u 2 V nU�. Then u 2 U and there exists a v 2 U with f(v) 6 f(u),
f(u) 6= f(v). Now u 2 Y � and v 2 Y , and this contradicts the statement that
f(v) 6 f(u) and f(u) 6= f(v). E

THEOREM 1. Let a 2 Rk be given, (1) holds and

Z = fx 2 Rn
+ : f(x) 6 ag: (5)

Then

(i) X� = Z \ Y �;

(ii) Z \ Y � is a 0-efficient solution set for X: (6)
Proof. (i) The fact that Z \ Y � � X� comes from Lemma 1.
Now letx 2 X�n(Z\Y �). Then,x 2 Y; x 2 Z butx 6= Y �. Thus, there exists a

y 2 Y with f(y) 6 f(x); f(y) 6= f(x). Becausex 2 Z , we have f(x) 6 a. Hence,
f(y) 6 a, and thus y 2 Z . We then have y 2 X , f(y) 6 f(x), f(y) 6= f(x),
contradicting x 2 X�. Thus X� � Z \ Y �.

(ii) This comes from part (i) and Theorem 6, Chapter 2 of Reference [4]. This
requires that, for all x 2 X , the following set

S(x) = fy 2 X : f(y) 6 f(x)g

is compact, and this holds for this paper becauseX is assumed to be compact, and
f(�) is assumed to be continuous on Rn

+. E

This particular form of Z is used in Reference [13] for a constrained multiple
objective routing problem. In the case of Theorem 2, identity (6) holds. It is
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possible, in other cases, for Z \ Y � to be a 0-efficient solution set for X , but (6)
not to hold.

2.2. CHOICE OF COMPUTATIONAL SEQUENCE

When Z \Y � is a 0-efficient solution set forX , we have f(X�) = f(Z \Y �) and
there is the question of how we might use this knowledge to assist the determination
of f(X�). In some cases it is useful, and in other cases it is not useful. Two ways
of proceeding are as follows, viz.
(a) find f(Z \ Y ) and then f(Z \ Y �);
(b) find f(X�) and then f(Z) \ f(Y �).

We consider three classes of situation.

A. Explicit finite lists of options. Let us suppose that fX;Y; f(X); f(Y )g are
finite explicitly listed sets and that f(X�) and f(Y �) are found by some comparison
procedure which eliminates non-efficient solutions. Let X and Y contain p and
q members respectively. The simple way to find f(X�) and f(Y �) directly is
by paired comparisons. This is computationally inefficient, but gives comparable
computational complexity with other methods, and allows us a little more precision
in computational time estimates (the method of Reference [14] is better). For our
method, there are p(p�1)=2 and q(q�1)=2 comparisons, respectively, for finding
f(X�) and f(Y �).

Let us now suppose that, on average, for any finite set W with r members, W �

contains �r members, with 0 < � 6 1, and that, on average, �q members of Y are
in Z , for some 0 6 � 6 1.

Finally, let c be the cost of checking whether or not a specific x is in Z , and d
be the paired comparison cost in determining the efficient solution set.

Then, the costs of finding f(X�) are

via (a): cq + d(�q(�q � 1)=2)

and

via (b): �cq + d(q(q � 1)=2):

Thus, finding f(X�) via (a) will be at least as good as by method (b) if and only if

c=d 6 q(q(1 + �)� 1)(1� �)=2(1 � �): (7)

For some problems (see, e.g., [13], which uses a vector minimum dynamic pro-
gramming approach, similar to the approaches of Reference [4, p. 165], to find
efficient solutions for a constrained routing problem) Z is given by (5), x corre-
sponds to a route, and Y is a set of routes.

jogo477.tex; 30/06/1998; 13:21; v.7; p.5



440 D.J. WHITE

In this case, checking whether or not x 2 Z is computationally equivalent to a
paired comparison in the efficiency procedure. Thus, c = d. In general, for large
q; � is likely to be close to 0 and inequality (7) approaches

q(q � 1) > 2(1� �);

and is almost certain to be true. Thus, for this class of problem and others, it is
likely that method (a) is preferable. Nontheless, it is conceivable that, for some
problems in this class, method (b) is preferable.

B. Implicit options defined by constraints for real variables. Let us suppose that
(1) holds and that Z and Y are implicitly defined by the following constraints with
a 2 RK , b 2 Rm, F 2 RK�n, B 2 Rm�n, viz.

Z = fx 2 Rn
+ : Fx 6 ag; Y = fx 2 Rn

+ : Bx 6 bg (8)

and

f(x) = Fx; F > 0: (9)

Now it may be easier to find f(Y �) by some method than to find f(X�) by the
same method. We will expand upon this for the linear situation given by (8), (9)
for K = 2, using the weighting vector method for determining efficient solutions.

From Reference [4, Chapter 4, Corollary 1.2]

Y � = fy 2 Y : 9� 2 R2
+; � > 0; �1 + �2 = 1; such that

�Fy 6 �Fx 8x 2 Y g: (10)

Using (10) we see that f(Y �) is a piecewise-linear connected set inR2
+, and that

f(Y �) is characterized by a set fE(Y �) ofT extreme points f�t; 1 6 t 6 Tg � R2
+,

with end points �1; �T , with

�t1 > �t+1
1 ; 1 6 t 6 T � 1

and

f(Y �) =
T�1[
t=1

[

2[0;1]

f� 2 R2
+ : � = 
�t+1 + (1� 
)�tg: (11)

Similarly, f(X�) is a piecewise-linear connected set in R2
+, and f(X�) is

characterized by a set fE(X�) of S extreme points f s; 1 6 s 6 Sg � R2
+ with

end points  1;  2, with

 s1 >  s+1
1 ; 2 6 s 6 S � 2;  1

1 >  
2
1 ;  S�1

1 >  S1 ;

and

f(X�) =
S�1[
s=1

[

2[0;1]

f� 2 R2
+ : � = 
 t+1 + (1� 
) tg: (12)
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Note that it is possible, with this presentation, to have  1 =  2 and /or  S�1 =
 S , as stated in (14) and (16) to follow.

Because (6) holds, we see that f(X�) is a connected subset of f(Y �) and that
there exists a pair ft1; t2g � f1; 2; �; �; Tg (possibly not distinct) such that

 s = �s+t1�2; 2 6 s 6 t2 � t1 + 2 = S � 1; (13)

 1 =  2 = �1 if t1 = 1; (14)

 1 = 
1�
t1 + (1� 
1)�

t1�1 : 
1

= min[
 2 [0; 1] : 
�t11 + (1 � 
)�t1�1 2 f(X)] if t1 6= 1; (15)

 S =  S�1 = �T if t2 = T; (16)

 S = 
S�
t2+1 + (1� 
S)�

t2 : 
S
= max[
 2 [0; 1] : 
�t2+1 + (1� 
)�t2 2 f(X)] if t2 6= T: (17)

In effect (13)–(17) generate f(X�) from f(Y �) by following f�t; 1 6 t 6 Tg,
beginning with t = 1, until the first �t is encountered such that �t = Fx for some
x 2 X , viz. t = t1. The sequence is then reversed, beginning at t = T , until the
first t is encountered with �t = Fx for some x 2 X , viz. t = t2.

If t1 = 1, then s = 1 and s = 2 are identified with t = 1. Otherwise, for some
t1 6= 1, �t1 is the first �t encountered with �t = Fx for some x 2 X . Then, in
effect, (15) simply finds that part of the line joining �t1�1 and �t1 which is generated
by members of X .

A similar explanation applies for the reverse sequence.
The determination of f�t; 1 6 t 6 Tg is carried out by using parametric linear

programming in �1, as a result of identity (10).
It is not necessary to check each �t to see if �t = Fx for some x 2 X . If we

begin with � = (0; 1) (removing any inefficient solutions which may arise because
� 6> 0), we merely check all points �t generated until we reach t = t1. We may
reverse the process, beginning with � = (1; 0), and only check until t = t2 is
found.

In general, T > S, and thus more extreme points arise in f(Y �) than in f(X�).
However, the parametric linear programming involved in finding f(Y �) can be
somewhat less than that involved in finding f(X�).

For transportation problems, for example, if Y corresponds to the unconstrained
transportation problem, and Z corresponds to the additional constraints, then the
special structure of the unconstrained transportation problem considerably assists
the determination of f(Y �), and this structure is lost once additional constraints
are added.
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C. Implicit options defined by constraints for discrete variables. There are some
discrete problems where special structures are useful in an optimisation process
and for which f(Y �) is more readily found than is f(X�), using a specific method.

In Reference [15], a special form of assignment problem is studied, in which
f(x) takes the form, with K2 = n,

fk(x) =
KX
i=1

cikxik; 1 6 k 6 K: (18)

In this class of problems, i may be a job, and k may be the machine, and, for
each k, (8) gives the total time for machine k for assignment x.

For this class of discrete problems, the weighting vector method still gives all
of the efficient solutions. Once additional constraints are added, this result fails
to hold. If Y corresponds to the standard assignment constraints, then f(Y �) may
be found fairly easily, and if the additional constraints, defining Z , are such as to
make Z \ Y � a 0-efficient solution set for X; f(Z) \ f(Y �) will give f(X�).

3. �-efficiency in the linear case

3.1. �-EVALUATION

In the general case, finding, for a given � whether or not Z \ Y � is an �-efficient
solution set for X , means showing whether or not the following is true, viz.

8x 2 X;9y 2 Z \ Y � : f(y)� � 6 f(x): (19)

This is, in general, quite a difficult problem.
In the case when �k = �, 1 6 k 6 K , demonstrating (17) is equivalent to

showing that

max
x2X

�
min

y2Z\Y �

�
max

16k6K

h
fk(y)� fk(x)

i��
6 �: (20)

Even the demonstration of (20) can be quite difficult. Finding the smallest � for
which (20) holds is even harder.

In this section, we will confine ourselves to the linear form (8), (9), with K = 2
but with the constraint matrix F for Z in (8) replaced by a more general constraint
matrix A 2 Rl�n.
f(Y �) is given by (11). However, although f(X�) still takes the form (12), the

identity with (13)–(17) does not necessarily hold.
We may, however, in principle adopt a similar approach to that of (13)–(17).

Using (11) we see that f(Z) \ f(Y �) takes the form

f(Z) \ f(Y �) =
T�1[
t=1

[

2[


t
;


t
]

f� 2 R2
+ : � = 
�t+1 + (1� 
)�tg
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where, when they exist,


t = max[
 2 [0; 1] : 
�t+1 + (1� 
)�t 2 f(Z)]

and



t
= min[
 2 [0; 1] : 
�t+1 + (1� 
)�t 2 f(Z)]:

In effect, f
t; 
tg determine the extreme points of the linear section of f(Y �)

between �t and �t+1 which lies in f(Z), and hence lies in f(X�). We note that
neither 
t nor 


t
need exist, in which case the corresponding line subsection is

empty.
In principle, the pairs of points f�

t
; �tg given by

�t = 

t
�t+1 + (1� 


t
)�t; 1 6 t 6 T � 1;

�
t
= 
t�

t+1 + (1� 
t)�
t; 1 6 t 6 T � 1;

when they exist, may be found by tracing through f�t; 1 6 t 6 Tg, noting that if
�t 2 f(Z) and �t+1 2 f(Z), then 


t
= 0; 
t = 1, and constructing the requisite

linear subsections.
When � = 0 is feasible in (19), we have

�t = �t; 1 6 t 6 T � 1;

�
t
= �t+1; 1 6 t 6 T � 1:

The pairs ff�
t
; �tg; 1 6 t 6 T�1g, determine line intervals on f(Y �)which lie

in f(Z). The residual region of f(Y �) consists of open or half-open, line intervals
of f(Y �). To avoid undue details, we will simply let fW r; 1 6 r 6 Rg, be the
closures of these intervals (we include the end points of each such interval to
simplify matters, though such points may be in f(Z)).

For the moment, let us assume that Z \ Y � 6= �. Now if x 2 X , there exists a
y 2 Y � with Fy 6 Fx. Hence, an upper bound on the left-hand side expression of
(20) is

� = max
x2Y �

�
min

y2Z\Y �

�
max

16k62

h
fk(y)� fk(x)

i��
:

Since, without loss, we can drop all f 2 f(X) \ f(Y �), this is the same as

� = max
16r6R

"
max
f2W r

"
min

g2f(X)\f(Y �)

�
max

16k62
[gk � fk]

�##
:

Now let ff� r; � rg; 1 6 r 6 Rg be the extreme points of fW r; 1 6 r 6 Rg,
with � r1 6 � r1; �

r
2 > �

r
2.

jogo477.tex; 30/06/1998; 13:21; v.7; p.9



444 D.J. WHITE

Also, for each W r, 1 6 r 6 R, let f�r; �rg be the nearest two members of

[16t6T�1 f�
t
; �tg to W r, with �r1 6 � r1; �

r
2 > � r2; �

r
1
> � r1; �

r
2
6 � r2. Then, for

f 2W r,

min
g2f(X)\f(Y �)

�
max

16k62
[gk � fk]

�

is realised at g = �r and/or g = �r .
Letting f 2W r take the form

f = 
� r + (1� 
)� r; 
 2 [0; 1];

we see that

� = max
16r6R

"
max

06
61

"
min

g2f�r;�rg

�
max

16k62
[gk � (
� rk + (1� 
)� rk)]

�##
: (21)

The size of � will depend on how well ff�
t
; �tg; 1 6 t 6 T �1g are distributed

over f(Y �).
If Z \ Y � = �, then we cannot use the above method. However, we can

supplement f(Z) \ f(Y �) by additional points in f(X�) as follows.
Each extreme point ofW r; 1 6 r 6 R, which is not in f(Z)must be in f�t; 1 6

t 6 Tg, because if � r ( resp. � r) 2 [T�1
t=1 f�

t
; �tg, then � r (resp. � r) 2 f(Z).

So let T 0 � f1; 2; �; �; Tg be the set of t for which �t 62 f(Z), and consider the
following problem P t, t 2 T 0.

P t min
x2X

�
max

16k62
[max[fk(x)� �tk; 0]]

�
: (22)

If �t is the value of (22), and xt solves problem P t, then �t > 0 and

fk(xt) 6 �tk + �t; t 2 T 0: (23)

If xt uniquely solves problem P t, then xt 2 X�. If xt does not uniquely solve
P t, the following problem Qt will produce a solution x̂t which solves P t and lies
in X� (see Theorem 7, Chapter 1 of Reference [4]).

Qt min
x2X;f(x)6f(xt)

2
4 X

16k62

fk(x)

3
5 :

The points ff(xt) or f(x̂t); t 2 T 0g, are nearest points in X�, in a specified
sense implicit in (22), to f�t; t 2 T 0g. If f�t; t 2 T 0g, are small, then, adding these
to ff�r; �rg; 1 6 r 6 Rg, in (21), will tend to reduce �. In the extreme case, when
�t = 0, then, from (23) we have

�t = f(xt)( or f(x̂t)) 2 f(X�);
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because xt (or x̂t) 2 Y and �t 2 f(Y �).
Note that the procedure outlined above can, in principle, be applied to all

f�t; 1 6 t 6 Tg, in the first instance if desired. The ff�
t
; �tg; 1 6 t 6 T � 1g,

analysis simply allows some of these to be determined as being in f(X�) in the
first instance, in which case �t = 0 for all such �t.

3.2. FURTHER APPROXIMATIONS

The number, T , of extreme points of f(Y �), may be quite large. Hence it may be
required that f(Y �) be reduced by some selection process before the �-evaluation
phase is commenced.

If we select of subset of f�t; 1 6 t 6 Tg, including �1 and �T in this subset, we
generate a surrogate set f(Y ��) for f(Y �). A similar �-efficiency analysis may be
applied to f(Y ��) as was given for f(Y �).

3.3. AN ILLUSTRATION

We will consider a standard multiple objective balanced transportation problem,
where

Y =

8<
:x 2 RM�N

+ :
NX
j=1

xij = bi; 1 6 i 6M

9=
; ; (24)

Z =

(
x 2 RM�N

+ :
MX
i=1

xij = aj ; 1 6 j 6 N

)
; (25)

fk(x) =
MX
i=1

NX
j=1

fkijxij; k = 1; 2:

(24) and (25) have been put in equality form, although they could be put in
inequality form. Also, to conform with the general framework, we have n =MN .

If we find f(Y �) by the weighting factor method, given � 2 (0; 1) we need to
find

min
x2Y

2
4 MX
i=1

NX
j=1

(�f 1
ij + (1� �)f2

ij)xij

3
5 : (26)

Because of the special form of Y we see that, in (26), we may carry out the
minimisation for each value of i separately.

For 1 6 i 6 M , let f�ti; 1 6 t 6 T (i)g, be the set of efficient solutions of the
set of N vectors fbifij; 1 6 j 6 Ng, corresponding to fxij ; 1 6 j 6 Ng, ordered
so that

�ti1 > �
t+1;i
1 ; 1 6 t 6 T (i)� 1:
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For 1 6 i 6 M , the critical � values generated in the weighting factor process
are given by �ti = (�t+1;i

2 ��ti2 )=((�
ti
1 ��

t+1;i
1 )+(�t+1;i

2 ��ti2 )); 1 6 t 6 T (i)�1.
At� = �ti, in the multiple objective spaceR2

+; �
t+1;i and �ti are equally optimal

for (26), with

�ti < �t+1;i; 1 6 t 6 T (i)� 1:

The complete set of critical � values for the overall optimisation in (26), taken over
all i, is then

f�ti; 1 6 i 6M; 1 6 t 6 T (i)� 1g: (27)

If T (i) = 1 for any i, we delete the corresponding set in (25).
Now let the f�ti; 1 6 i 6 M; 1 6 t 6 T (i) � 1g be renumbered f�t; 1 6 t 6

T � 1g with

0 < �t < �t+1; 1 6 t 6 T � 1:

Define the following sets f�tig; 1 6 i 6M; 1 6 t 6 T � 1:

�ti =

�
f�r+1;i if �ri < �t < �r+1;i for some r
f�ri; �r+1;ig if �ri = �t for some r

�
:

Then, the extreme points fE(Y �) of f(Y �) are given by the non-dominated vectors
in

MX
i=1

TX
t=1

��ti;

where � means ‘sum-set’ addition (see [16], where an algorithm for finding the
non-dominated vectors is given).
f(Y �) is then the piecewise linear set formed by joining up adjacent pairs of

points of fE(Y �).
Once f(Y �) has been found, the analysis of Section 3.1 and the approximation

of Section 3.2, may be used.

4. Summary and comments

In this paper we have considered the problem of finding the efficient solution set,
or an �-efficient solution set, when the set of actions, X , may be expressed as the
intersection of two other sets, fY;Zg, each of which may be defined explicitly or
implicitly. The central issue is one of whether or not this decomposition may be
used to simplify the efficient solution set, or �-efficient solution set, determination.

In Section 2 conditions are given to have X� = Z \ Y � and for Z \ Y � to be a
0-efficient solution set for X . For situations where fX;Y; f(X); f(Y )g are listed
explicitly, a computational cost analysis is given to determine whether it is better to
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treatX directly and find f(X�) or to find f(Y �) first, and then find f(Z)\f(Y �). It
is almost certain that it is better to take the former approach. If however, fX;Y;Zg
are given implicitly by constraints, then it is possible that Y has a special structure
which facilitates the determination of f(Y �), which structure disappears as soon
as the Z constraints are added. An illustration is given where this may arise, and
the framework of an approach for finding f(Y �), and then f(X�), in the linear
case for K = 2 is given.

In Section 3 an approach to the determination of whether, given an acceptable
� 2 RK

+ ,Z\Y � is an �-efficient solution set, is given for the linear case withK = 2.
This is supplemented by the possibility of using approximations for f(Y �).

Finally, the �-efficiency approach is illustrated with a problem in which f(Y �)
is fairly readily obtained.

The general problem of determining whether or not a given � leads to Z \ Y �

being an �-efficient solution set is left as an open one. It is clearly a difficult problem
and the computational effort involved may not be worthwhile. Nontheless, some
extension to cases beyond the special ones considered in this paper may be possible.

For scalar optimisation problems considerable interest has been shown in the
development of heuristics, whose purpose is to find acceptable solutions at accept-
able computational effort levels. For multiple-objective problems, the need for
heuristics is even greater, for, not only do we have the computational effort need-
ed to find a single solution, but we have a great multiplicity of solutions in my
cases. It is possible that, by looking at problem structures which facilitate such
analysis, we may be able to develop heuristics for the multiple objective case. The
approach of this paper is one such approach. If we find f(Y �) and then see how
good f(Z \ Y �) is, we may find that an acceptable � exists. If this fails, all that is
lost is the computational effort involved in this phase. At the very least we know
that Z \Y � � X�, and hence some efficient solutions may be generated relatively
easily.

An illustration of a special assignment problem is also given.
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